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Some analogs of theMaxwelltoroida1 vortex are obtained for the case in 
which the flow inside the vortex has two velocity components and the external 
flow is potential, The problem is solved on the assumption that the ratio 
of the torus cross section radius to that of the torus is small. 

Classic solutions of problems of hydrodynamics of perfect fluid flows of tie kind 
of Hill’s spherical vortex [l] Or of Maxwell’s toroidal Vortex [Z, 31 are well known. 
mact.tcal feasibility and use of flows of this type were indicated in [33. A character- 
istic feacture of these solutions is their cylindrical symmetry. An extension of Hill’s 
solution in which the external flow is potential and the velocity field is essentially 
three-dimensional with the azimuthal velocity component inside the spherical vortex 
formation irr addition to the radial and axial velocity components was outlined in [a]. 
A solmi~n Of the problem of toroidal vortex in which the azimuthal velocity COmpOnent 

is taken into account in addition to the axial velocity component is derived in the 

pment paper using the concept of the perfect incompr~ible fluid. The external 
potential flow is assumed to be the same as in the problem of Maxwell’5 vortex. 

Let US consider the vortex ring raising 
at constant velocity in a perfect incompre- 
ssible fluid. ~rn~~o~ of the ring are 

assumed constant. since the potential fiow 
outside the toroidal vortex is the same as 

that outside the ring vortex (Maxwell’s vOr- 
tex), whose vorticity 0 is constant over 

the cross section, and the axial velocity 
component is the only non-zero compOne&, 
hence the dimensionless stream function 
$+ of the external flow around the toroidal 

VOrW of dimensionless radius R(the leng-& 
and velocity units here are, respectively, 
the cross section radius a and the quantity 

6~2 ) in the system Of coordinates shown 
Fig. 1 in Fig. 1 is of the form f2-J 

9+ (P) = (R/Z) 1111 @R/p)-l,p>l (1) 
The coordinate origin for the radial axis p and axial angle 6 is at the center of 

symmetry Of the torus cross section. The center of symmetry of the torus cross section 
lies On the circumference in a plane normal to plane p6 whose position is derterm- 
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ined by the azimuthal angle (p . Owing to the axial symmetry of the problem any 

point of the circumference can be taken as point cp = 0 , 

In conformity with (1) and [3,5,6] a region is formed around the toroidal 

vortex in which the fluid rotates around it and moves with it. 

The equations and boundary conditions for the stream function 9 (6, P) of 

the axisymmetric vortex flow of perfect incompressible fluid inside the torus is of the 

form [7] 

Stream functions g (6, p) and @ (19, p) / d6 must also satisfy the conditions 
of periodicity with respect to 6. Functions CD (T) andF (I#) represent circulation and 

the Bernoulli integral, respectively. Boundary conditions define the impenetrability and 
the equality of axial and azimuthal velocity components of the internal and external 

flows and the condition of absence of singularities at the coordinate origin. 

The problem had not been analyzed in a general form even for @ (9) = const 
and the simplest distributions P (I#). We shall investigate the flow inside a toroidal 

vortex for two different forms of dependence of circulation @ (9) and of the Bernoulli 

integral on the stream function 

@I N) = k& + Cl, Fi (9) = A,$ + Aio< 0 (i = 1, 2) (3) 

@‘2 (9) = r&X2+ / 2 + c$# + 6JV 

ki, ci, Ai, Aio, b, = const 

The interdependence of constants c, k, A, and b, is determined below. 
Since p sin 6 / R < 1, the substitution 9 (6, p) = 1/R + p sin 6Y (9, 

P) after rejection of terms of second order of smallness reduces Eq. (2) to the form 

av 
-@++g+ ha% -I- [ki’ - $1 Y + 

(4) 

,Q&‘!? + AR’/* z 0 

whose solution is sought in the form Y (6, p) = f (p). Hence the solutions of Eq. 
(4) with boundary conditions (2) and the dependence of Ai, Ci, and b, on ki for 
the two indicated distributions of CD ($) and F (9) are of the form 

cl = -('l,)R (in 8R - I)kl, qi = [kt2 - 3 / (4R")p 

(5) 
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A 2 = rle’ (2R)-1 {Jo (qa)haJ~ (qW - In 8R + 1) - k,c,R-2 

b, = - (R / 2) (In 8R - 1)I(Rkz2 / 4)(In 8R - 1) + c,l 

where (J72 (4 is the Bessel function, 

A flow whose circulation and Bernoulli integral are of the form (3) and the constants 

ki, ci, Ai, and b, are defined by (5) can, thus, be present in a toroidal vortex. 
The second equality of system (5) implies that in a ring vortex the flow defined by 

functions Q, (9) and F(~)oftheformF($)=A~fA, and a(q)=& 
is not possible, Setting in Eqs. (5) Ai = 0 we obtain expressions that define a 
uniform helical flow in the toroidal vortex, when kr can only have diescrete values, 

The formulas for velocity components within the torus in terms of 9 are of the form 

(6) 

VW = [2 (k2v / 2 + C&J + b,)l”zR~-~ (i = 1, 2) 

Let us compare the vorticity distribution of the considered here flow inside the torus 

with the vorticity of flow determined in [2]. The vortex vector components of flow 

(6) are of the form 

~rp z 0, oicp = qiJ, (qip) / PJI (qi)) 

016 = kiJi (VIP) /’ [2J1 h)l 

~28 = (Ic,21c, + c&J, (qzp){2J1 (q2) [2 (k2q2 / 2 + c,q+ b2)1*‘~}-l 

In a torus inside which the flow has only the single axial velocity component the 

vortex components are of the form 

00 - - 0, co6 = 0, og = 1 

Thus the vortex vector of the considered flow at each point of surface p = const 
lies in the plane tangent to it at that point and, unlike the flow in [2] has two nonzero 

components 00, and Ok. We calculate the flow inside the torus using (5), (6) 

and the tables in [Sj. Distribution of the azimuthal velocity component along the p 
axis is shown in Fig. 2 for R= lOand ‘1 = 1. The azimuthal velocity component 

reaches its maximum u, = 0.34 at point p = 0. Streamlines for equally spaced values 

of 9 (P) are concentric circiles. The maximum of IJI (p) is reached at point 
p = 0 to which streamlines contract. point p = Ois not critical, since at it the 

azimuthal velocity component does not vanish. 
Let us consider a ring vortex inside which the flow is uniformly helical, i. e. funct- 

ions @ (9) and F (9) are of the form CD (9) = kc19 + c1 and F (+) = A o. 

when the torus radius is fixed k, can only have discrete values that correspond to 
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roots of the third equation of system (5). The dependence of that root on the torus 
radius I&s shown in Fig. 3. when Al = 0 the roots of the third equation of system 
(5) monotonicaly decrease with increasing radiusI& and when R -+ DC) the first root 

asymptotically tends to k = 2.404, the second to 5, 52, the third to 8.653, and 
so on. These values are roots of the Wendentalequation J, (q) = 0. 

3 5 7 R 

Fig. 3 

In the considered case the maximum deviation of rcots of the third equation of system 
(5) from their asymptotic values are insignificant and decrease with increasing k, . 
Thus, if kI is the n-th root of the third equation of system (5), the flow inside the 
toroidal vortex divide in IL vortices whose axial velocity components are oriented in 

the same direction. Let us consider the case in which kl corresponds ton = 4. in 

that case there are four vortex formations inside the vortex ring, which lie in regions, 

0 < cp < 23t, 0 < 6 < 23x, 0 < p < k,” / k4* 

0 < cp < 251, 0 < 6 < &c, kl* i k4* < p KC k,* I k4* 

0 < cp < 2ns, 0 \< 6 < Zn, k,” I’ k,” < p < k,” I k,” 

0 B cp < 235 0 B 6 < 2n, k,” I Ic,” 6 p < I 

where kl*, k**, kg*, and kh* are roots of the third equation of system (5) with 

fixed radius Rand A, = 0. 
Note that the azimuthal velocity component and the vorticity components of the 

ring vortex with uniform helical flow decrease, in conformity with the second equality 

of system (5) and expressions (6) and (7), with increase of the torus radius, while the 
axial velocity component varies only slightly. 

Let us now consider a toroidal vortex of radius Rconsisting of two vortex formations, 

one of which in the space between the tori defined by 1 < p \< ~0, 0 < 6 < 2x, 
and 02<cp<22nandp0>,p>,0, O,<d<2n,and0<~<223t whichweshalf. 
call the internal and external vortices, respectively. we shall investigate the flow inside 

these vortices assuming that the dependence of @ (9) and F (9) on the stream function 
is of the form cf, (I#) = klC, + c and F (q) = A, -/- A,qTrespectivelY, and that COD- 
stants A, A 0, k, and c may, 
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generally speaking, be different in the internal and external vortices. we denote 

these constant in the external vortex by subscript 1 and in the internal one by subscript 
2. The solution of problem (2), (3) for the external vortex (the condition of absence 
of singularities at the coordinate origin is not required in this case) is of the form 

*1 (P) = [(R 12) - BR’%lN, h)lJo (~4 1 hJ1 (ql)l + 
BR+‘pN, (up) - 4 (k,c, + A1R2)R2 / (4k12Ra - 3) 

(‘7) 

$ Jo (VI)} w INo (~1) JI (VI> - Nl(rll) Jo (rdl-' 

c = -(R / 2)(ln8R - i)kl 
where J, (z) and N, (2) are, respectively, the Bessel and Neumann functions, 
and constant Al is arbitrary. 

Let us now consider .the flow in the internal vortex whose stream function 9s (P) 
is determined by the solution of Eq. (2) with the boundary conditions 

BR”~INI (rllpo), iv = Yl (PO), qs = [kz2 - 3 / (4R2)W 

(8) 

setting in formulas (7) and (8) AI = 0 and A, = 0 we obtain the vortex 
formation with uniform helical flow in the external and internal vortices, respectively. 

We shall now derive a toroidal vortex formation in whose external flow is defined 
by functions CD ($) and F (tp) of the form (3), while the flow in the internal vortex 
has only a single axial velocity component. In this case an additional condition that 
the azimuthal velocity component must be zero at surface p = PO must be imposed 
on the flow in the external vortex, and then AI is related to Jci by the formula 

Al = Rk12-l {{I&I 8R - ~)JI (rd + Jo hh1-~1 x 
JI-’ hNX h, ~0) - Jo~a-~l}Y--~ (~1, 1) + 

A2-1(ln 8R - 1)) (4k2R2 -3)(4R”)-l- kz2R2-l(ln 8R - l){Y (q, 

Po)y-1 h 1) - w(q1, PO) = J1 (rlANo (111~01 + Jo (rlr~o)N~ (rlr? 

y (111, PO) = JI (rll)No (RPO) - Jo (111~o)Nr (~1) 
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setting in (8) k, = 0 for the stream function in the internal vortex we obtain 

92 (PI = M I&l (CP) - fO (5PO)I /[UI (SP*)l + N 
5 = if3LR-l, A, = 3/4 IN - MI, (Q~,)I~-~ (~po)]~-2 

where i’s (z) and R, (z) are Bessel functions of imaginary argument. 
bet US now consider the vortex formation where, unlike the previous case, the 

flow in the outer vortex is defined by a single axial velocity component, while in the 
inner vortex it is defined by functions @ (9) and F (9) of the form (3) and has two 
velocity components. The expression for the stream function of the outer vortex which 
satisfies boundary conditions (2) is of the form 

where constantA, is arbitrary. 
The stream function of the inner vortex, which satisfies boundary conditions (8) 

is of the form 

92 = N” + Al* IJ, h2) - Jo (q2P)h2Jl h?)l-l 

A, = --(N* + M*J, (qz)hjzJx (q2)l-1)q22 + k,W* 

M” = (R”%Kl (5fV (5) - R 1251, cwl)~l (SPO) - G&l (CPO), 

N” = *1* (P), c2 = --k,N” 

Hence an inner vortex can exist only then when to each fixed k, corresponds 

specific values of A i and ci defined by formulas (8). 
Finally, let us determine the velocity of the vortex ring whose inner flow has 

velocity components, and circulation and the Bernoulli integral. are specified by 

functions (3). We introduce in the cylindrical coordinate system the quantity z,, 

two 

where the integration is carried out over the whole volume of the ring. Passing to 

the system of coordinates (P, 6, VP) shown in Fig. I, differentiating both sides with 

respect to t, and taking into account that pd6 I dt = vg and dp J dt = up G 0 

we obtain 

The quantity dz, / do is the velocity of motion of the vortex ring. The axial 

velocity component is determined by (6), and the expressions for [ rot, Y 1 are of 
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the form 

I rot v I1 = {WJ12hP) + ~12J~2hP)l/ 14J,“(771)1)“’ (10) 

The first equality of system (10) defines the modulus of vorticity in the vortex ring 
inside which the flow is defined by functions a, (9) and F1 (I$) of the form 

@,I (9) - k,q + CI and F, (q) = A,$ -I- Alo ; the second of these equalities 

defines it in the vortex ring inside which the flow is determined by functions mz (I#) 

and F, (9) of the form FZ (9) = A& i- -4,” and @ (9) = (h2‘%+2 / 2 $ 

c,+ + b2)‘!,. The dependence of the velocity of the vortex ring rise on the torus 

radius R is shown in Fig. 4 by curve 1 for ?J 1 = 1 and functions CD1 ($) and FI ($) 

of the form CD1 ($) = ICI+ + ~1 and F (I@) = Alo -i- A,$, and the velocity 

of rise determined by formula (9). For comparison, the velocity of rise of a vortex 

ring inside which the flow has only the axial velocity component [2] is shown in Fig. 4 

by curve 2. The difference between the rise velocities in the two cases is small which 

is related to the decrease of the azimuthal velocity component 
with increased torus radius, while the axial 

velocity components vary only insignific- 
antly. Hence for large torus radii the 

azimuthal velocity component is small 
and ring vortices differ only slightly. It 
will be seen from Fig. 4 that the rise vel- 

8*fO-z 

6.10-* 

4W2 
IO 20 

Fig. 4 

ocities of both ring vortices monotonically 
decrease with increased torus radius; when 

fi = 14.9 these velocities are equal, while 
forRG4.9 the velocity of rise of the ring 
vortex with an azimuthal twist is higher 

than without it. 
The author thanks Iu. S. Riazantsev 

and Iu. p. GupalO for formulating this 
problem and their interest in it. 
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